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Lattice constant and cohesive energy are basic properties in the design of materials and devices. However,
due to neglect of long-range van der Waals (vdW) interactions, density functional approximations (DFAs) often
yield unusually large errors for ionic solids and heavy metals. Here, we propose a model for the dynamically
screened vdW correction, including the leading order as well as higher-order contributions. The striking feature of
this model is that important screening effects and higher-order contributions are properly considered and that its
contribution to the short-range part is removed by a novel damping function for the avoidance of double counting.
As a result, the model dramatically reduces the error of the DFA-GGA in lattice constant and cohesive energy. We
also find that the three-body interactions are small, due to the screening effects. These observations greatly improve
our fundamental understanding of vdW interactions and enhance the applicability of efficient semilocal DFAs.
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Ionic solids and heavy metals are important materials rep-
resenting two extremes in electric and mechanical properties.
The former are hard insulators with large energy gaps but
low fracture toughness, while the latter are soft conductors
with zero energy gap and excellent ductility. Due to their wide
applications, they have been extensively studied [1,2]. Among
the two different classes of materials, one thing is common.
Both contain important van der Waals (vdW) interactions.

In the development of density functional approximations
(DFAs) to the exchange-correlation energy [3–11], Kohn-
Sham density functional theory has reached a high level of so-
phistication. In recent years, a large volume of literature study-
ing lattice constant and cohesive energy with various DFAs
has appeared. It was shown [12–15] that the local spin-density
approximation (LSDA) tends to underestimate lattice constant
and overestimate cohesive energy, while the generalized gra-
dient approximation (GGA) tends to approach experimental
values from the opposite direction. The reason is that, for
bonded systems, LSDA tends to overestimate the short-range
part arising from the electron density overlap [16], which often
overcompensates for the long-range van der Waals interaction
absent in semilocal DFAs [17]. As a result, LSDA yields too-
short lattice constants [4], leading to too-large cohesive energy.
However, the error of LSDA in cohesive energy is much less
dramatic than that in molecular atomization energies, because
the equilibrium separation between atoms in molecules is
much smaller than that between atoms or ions in solids.

GGA [3] corrects the overbinding tendency of LSDA
by raising the constant LSDA exchange enhancement factor
through the incorporation of density gradients. The GGA
exchange enhancement factor Fx is defined by Ex[n] =∫

d3rnεunif
x (n)Fx(n,∇n), where n(r) is the electron density.

This gradient correction largely reduces the overbinding
tendency of the LSDA [18]. Since there is no compensation for
the missing long-range part, GGA tends to produce too-long
lattice constants and too-small cohesive energies. For many
solids, such as molecular crystals, ionic solids, and heavy
metals (but not for molecules), the main error of the PBE GGA
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arises from its neglect of vdW interactions. This suggests that
GGA for solids needs a full van der Waals correction [19–22].

Many van der Waals (vdW) corrections have been pro-
posed [23–27]. Some of them only consider the dipole-
dipole interaction. Since the equilibrium separation between
molecules in the gas phase is larger than that in the solid phase,
higher-order interactions are less significant in the gas phase,
compared to the leading-order one. However, they become
important in solids, as demonstrated by recent works [19,28].
(For intramolecular interactions, higher-order terms are also
important.) Thus there is great demand for the development of
vdW corrections that include higher-order contributions.

In this Rapid Communication, we propose a vdW correction
to DFA for solids and combine it with the PBE GGA [3]
to calculate lattice constants and cohesive energies of ionic
solids and metals [1,2]. In our formulation, the screening effect
is accounted for via the modified Penn model [29] for the
frequency-dependent dielectric function. Our goal is to provide
a long-range vdW correction. This goal can be achieved with a
damping function, which is designed to remove its contribution
to the short-range part. Our calculations show that, with this
screened vdW correction, the mean absolute error of GGA
drops by a factor of three for lattice constant and a factor of two
for cohesive energy, substantially improving the performance
of GGA. We also find that the three-body contribution is very
small, due to the dielectric screening. The structural phase
transition from face-centered cubic (NaCl) to simple-cubic
structure (CsCl) for Cs halides can be correctly predicted by
the LSDA and all vdW-corrected DFA.

Formulation. The expression for the vdW correction to
the DFA lattice constant can be derived by generalizing the
formula of Ref. [30] valid for the bcc (body-center cubic)
structure of alkali metals to any cubic lattice. For this purpose,
let us begin with the equation of state (EOS) of a solid
ε(v) = εDFA(v) + εvdW(v), where v is the volume/atom, the
first term on the right is the total energy/atom from DFA
calculation, and the second term is the vdW contribution,
which is absent in the PBE GGA. Then we expand the EOS
around the DFA equilibrium volume v0. For any cubic lattice,
we have

εDFA(v) = εDFA(v0) + (9p/2)B0a0(�a)2, (1)

2475-9953/2017/1(2)/020802(5) 020802-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevMaterials.1.020802
http://www.sas.upenn.edu/%7Ejianmint/


RAPID COMMUNICATIONS

TAO, ZHENG, GEBHARDT, PERDEW, AND RAPPE PHYSICAL REVIEW MATERIALS 1, 020802(R) (2017)

where �a = a − a0, with a0 being the DFA equilibrium
lattice constant, and p = 1 for simple cubic, 1/2 for bcc
(body-center cubic), 1/4 for fcc (face-center cubic), and 1/8
for the rock salt (rs), diamond, and zinc-blende structure. B0 is
the bulk modulus defined by B0 = v0d

2εDFA(v)/dv2|v=v0 . In
the derivation of Eq. (1), we have used the fact that, at the equi-
librium state, the first derivative of the energy vanishes. This
leads to εvdW(v) = εvdW(v0) + 3pa2(dεvdW(v)/dv)|v=v0�a +
(9p/2)�Ba0(�a)2, where �B = v0d

2εvdW(v)/dv2|v=v0 is
the vdW correction to the bulk modulus, and dεvdW/dv =
(1/3pa2)dεvdW/da.

The vdW correction to the lattice constant of DFA can be
obtained by putting εDFA(v) and εvdW(v) together and min-
imizing the total energy. This immediately leads to the vdW
correction, �a = a − a0 = −(1/9a0p)ε′

vdW(a0)/(B0 + �B0),
where ε′

vdW(a0) = dεvdW/da|a0 . However, the PBE GGA tends
to underestimate the bulk modulus, as seen from Table S4 of
the Supplemental Material (SM) [31] (see discussion below).
Adding the vdW correction (negative value) will slightly
worsen the PBE bulk modulus. This term will be dropped.
(If more accurate bulk moduli are used, the error will become
smaller, as shown below). This leads to

�a = a − a0 = − 1

9a0pB0
ε′

vdW(a0). (2)

The vdW correction to the cohesive energy is �εcoh = εcoh −
εDFA

coh = −εvdW(v). The quantities εvdW(v) and dεvdW/da can
be calculated as follows. According to second-order perturba-
tion theory, the vdW interaction between well-separated spher-
ical objects is given by εvdW = −C6/d

6 − C8/d
8 − C10/d

10,
where d is the distance between two centers, and C6, C8, and
C10 are the vdW coefficients [32,33], measuring the dipole-
dipole (C6), dipole-quadrupole (C8), as well as dipole-octupole
and quadrupole-quadrupole (C10) interactions.

In solids, the vdW interaction can be reduced by the
screening effect from valence electrons [34]. For solids with
the fcc or rs structure, the atoms or ions are so close to
each other that a proper damping function must be applied to
each term in the asymptotic formula εvdW and its derivatives.
However, a damping function is usually a steplike function of
the distance d between atoms or ions. It rapidly goes to zero
when d is smaller than the sum of the vdW radii and approaches
unity quickly when d is greater than the sum of the vdW radii.
As such, its derivatives are highly sensitive to the choice of the
vdW radius. To avoid this sensitivity problem but still fulfill
the requirement that both the vdW energy and its derivatives
must be finite everywhere, we calculate the vdW energy and
its derivatives with respect to a first and apply the damping
function to each term in both the asymptotic expansion and its
derivatives second. (This procedure will be explored in future
work.) Thus the vdW interaction and its derivative per ion are
given by

εvdW = −1

2
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Here i,j represent positive (A) and negative (B) ions in ionic
crystals and i = j (i.e., A = B) in metals. k represents the
kth-nearest neighbor shell of Nok atoms or ions, and dok is
the distance between the ion at o and those in the kth shell.
f

ij

d (dok) is the damping function.
Several damping functions have been proposed [35–38].

A common feature of these damping functions is that they
allow some amount of the long-range part to contribute to
the binding energy when d = d

ij

vdW. However, the Fermi-like
damping function [37] was designed to cut off the short-range
part of −C6/d

6. Because −C6/d
6 − C8/d

8 − C10/d
10 must

diverge faster as d → 0, a much stronger short-range cutoff is
needed. To meet this consideration, we propose the following
damping function

fd (d/dvdW) = 1/(1 + e−x)6, x = c(d/dvdW − 1), (5)

where d is the distance between ions, and dvdW is the sum of
the effective or vdW radii (see discussion below). Following
the prescription of Wu and Yang [37], we determine c by
requiring fd (d) = 0.99 at d = 1.2dvdW. This gives c = 32.
Figure S1 shows the comparison of our damping function
with the Fermi-like one f Fermi

d (d). From Fig. S1 we see that,
as d approaches dvdW or smaller than dvdW, fd (d) vanishes
much faster than f Fermi

d (d). At the short range d = dvdW ≈ deq ,
fd (d) = 1/64, which is much smaller than f Fermi

d (d) = 1/2.
Determination of vdW radius. It is important to cut off

the vdW series at short range to avoid double counting,
because the short-range part will be described by DFA in
the DFA+vdW method. This cutoff can be performed with
a proper vdW radius via our damping function of Eq. (5).
Here we seek for a well-defined vdW radius. Given the static
multipole polarizabilities of an atom or ion from high-level ab
initio calculations, we can define the ionic vdW radii rl =
[αl(0)]1/(2l+1), where l = 1,2,3. For a classical conducting
sphere of sharp radius R, we would find r1 = r2 = r3 = R.
For real atoms or ions with rapidly varying electron densities,
we find that the sum of r3 for a positive and a negative ion
yields a much better approximation to the sum of Shannon’s
vdW radii [39] than does the sum of r1 or r2 (Table S4). This
leads us to choose r3 to define a vdW radius RvdW, to cut off
the vdW series at short range, and therefore reduce the risk of
overcorrecting GGA. Next, we observe that, for two classical
conducting spheres A and B of radii RA and RB, the vdW series
may be summed to all orders [40], and the resummed series
diverges when the separation between the centers approaches
RA + RB, so the vdW radius for the short-range cutoff of
a truncated vdW series (C6,C8,C10) should be Ri

vdW = bri
3,

leading to the sum of the vdW radii dij

vdW = bir
i
3 + bj r

j

3 , where
b > 1 and is of order 1.

Screened vdW coefficients. The screened vdW coefficients
between ions in a solid can be evaluated from [34,41,42]

Csc
2m = 1

2π

m−2∑
l1=1

(2(m − 2)!

(2l1)!(2l2)!

∫ ∞

0
du

αA
l1

(iu)

εA
1 (iu)

αB
l2

(iu)

εB
1 (iu)

. (6)

Here l2 = m − l1 − 1, and αl(iu) is the dynamic multipole
polarizability, which can be modeled by [30,43] αl(iu) =
[(2l+1)/4πdl]

∫ Rl

0 dr4πr2r2l−2d4
l ω2

l /(d4
l ω2

l +u2), where
l = 1 (dipole), 2 (quadrupole), 3 (octupole), and
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ωl = ωp

√
l/(2l + 1), with ωp = √

4πn being the local
plasmon frequency of the extended electron gas. Since
αl(iu) is not sensitive to the details of the electron density,
it is evaluated from the Hartree-Fock densities [44].
The two parameters Rl = [dlαl(0)]1/(2l+1) and dl are
determined by the low- and high-frequency limits [43]
(see Table S5). Taking R3 = RvdW leads to b = d

1/7
3 .

The bulk dielectric function ε1(iu) can be calculated as
follows. For alkali metals, the dielectric function is given
by ε1(iu) = 1 + ω̄2

p/u2, while for transition metals, it is
given by [45,46] ε1(iu) = 1 + ω̄2

pf /u2 + �2/(u2 + ω2
0). The

second term is due to the free-electron intraband transition,
while the third accounts for the bound-electron interband
transition. Here ω̄2

pf = (1/mopt)ω̄2
p is the corrected bulk

plasmon frequency, with mopt being the optical mass [47].
The parameters mopt, ω0, and � can be found from Ref. [48]
(see Table S3).

The dielectric function of semiconductors and insulators
can be simulated reasonably well with the modified Penn
model [49]. (See SM [31] for the detailed expression.)
The inputs to the model are the average valence electron
density obtained from n̄ = N/a3, with N being the number
of valence electrons in a conventional unit cell, bulk
plasmon frequency ωp = √

4πn̄, and the effective energy
gap ωg . (Atomic units are used unless otherwise explicitly
stated.) To make the model realistic, ωg is determined
by reproducing the correct static limit of the dielectric
function ε1(iu). We satisfy this condition with the Penn
model [50], εPenn

1 (0) = 1 + (ω̄2
p/ω2

g)[(1 + �2)1/2 − �], where
� = ωg/4εF , with εF = (3π2n̄)2/3/2 being the Fermi energy.

Lattice constant. We first calculate the DFA lattice constants
for 36 solids. All our calculations were performed with
the all-electron, full-potential electronic structure code FHI-
AIMS [51,52] within the PBE exchange-correlation potential.
For comparison, the LSDA lattice constants were also calcu-
lated with the same code. In our calculations, the so-called
“tight” settings were used for all the elements. Second tier was
used to ensure the convergence of the basis functions. Hartree
potential and integration grid were also properly converged
for the total energies of the solids and isolated atoms. The
atomic zeroth-order regular approximation [51] was applied to
treat relativistic effects. A uniformly distributed mesh of 24 ×
24 × 24 k points was used to ensure converged Brillouin zone
sampling for solids (see SM [31] for details). The deviations
from experimental lattice constants at 0 K, with zero-point
energy (ZPE) effect removed, are summarized in Table I.

Next, we calculate the vdW correction with Eq. (2). The
input bulk moduli B0 can be calculated from the EOS. Several
models [53–55] for EOS have been proposed. These models
should yield the same B0. In this work, we calculate this
quantity using the Birch-Murnaghan EOS [53]. We find that
this model yields a B0 that agrees with the quadratic fitting
within 1 ∼ 2%. So, we believe that this is the true PBE bulk
modulus (see Table S4 for details). The vdW energy derivative
is calculated from Eq. (4), and the screened coefficients
are obtained from Eq. (6). The input static multipole
polarizabilities and the static dielectric functions are taken
from ab initio values in the literature. All the inputs are given in
Tables S1–S3. The statistical error of the vdW correction to

TABLE I. Statistical errors (in Å) of LSDA and PBE in com-
parison with our vdW correction and Grimme’s D3 [26] to lattice
constants and cohesive energies of ionic solids and metals. ME =
mean error and MAE = mean absolute error.

Lattice constant

LSDA PBE PBE+vdW PBE+D3

ME −0.103 0.134 −0.008 −0.089
MAE 0.103 0.135 0.043 0.098

Cohesive energy

ME 0.40 −0.18 −0.03 −0.04
MAE 0.40 0.18 0.08 0.07

DFA lattice constant is displayed in Table I. For comparison,
we have also calculated the lattice constants with the popular
PBE+D3 (including the three-body term) and PBE+TS
methods proposed by Grimme et al. [26] (see Table I) and
Tkatchenko and Scheffler (TS) [24] (Table S7), respectively.

From Table I, we observe that, without vdW correction,
the PBE lattice constant is systematically too long. The error
is even larger than that of LSDA. This suggests that there
are strong vdW interactions in ionic solids and heavy metals.
For solids that have strong vdW interaction, we observe that
the lattice constant of LSDA is often more accurate than that
of PBE, because the former tends to overestimate the short-
range part, which can effectively compensate for the missing
long-range vdW interaction, as pointed out above. However,
with the vdW correction, the MAE of PBE drops from
0.135 Å to 0.043 Å, significantly improving the performance
of PBE. The maximum deviation of PBE occurs for CsI
in the rs structure, but this error drops from 0.225 Å to
−0.043 Å with our vdW correction. The error is even smaller
(MAE = 0.035 Å) if experimental bulk moduli are used (Table
S7), supporting our formulation. We also observe from Table I
that the dispersion D3 also improves upon PBE, but with an
error (MAE = 0.098 Å) twice as large as our correction. The
TS model significantly worsens the PBE values, with a huge
MAE of 0.396 Å (see Table S7 for detail), which is even
larger than that without correction. Our evaluation agrees well
with that (MAE = 0.41 Å) of Kim et al. [56]. These authors
have attributed the TS errors for ionic [56] and metallic [57]
systems to the limitation [58] of the standard Hirshfeld
partitioning. Much better results [56] were found from iterative
Hirshfeld partitioning [58], but we could not access that
correction to TS in FHI-AIMS. We have also applied the
many-body dispersion (MBD) extension [59] of the TS model
to these solids. But we have obtained only a few usefully
converged results, as shown in Tables S7 and S8. By fixing
the convergence problem of MBD, remarkable results can be
obtained [60].

Cohesive energy. Cohesive energy per atom is defined as the
difference between the energy per unit formula in a solid and
the total energy of constituent neutral atoms, divided by the
number of ions or atoms in a unit formula. The DFA cohesive
energies of 33 solids, in the same set used here for lattice
constant, are calculated with the same code and parameter
set. Due to the instability of CsCl, CsBr, and CsI with rock
salt (rs) structure, their experimental cohesive energies are
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TABLE II. Cohesive energies (in eV/atom) of CsCl, CsBr, and
CsI with rock salt (NaCl) and simple cubic (CsCl) structures.
Experimental values are taken from Ref. [61].

Str LSDA PBE PBE+vdW PBE+D3 Expt

rs 3.51 3.12 3.24 3.23
CsCl

sc 3.54 3.07 3.25 3.24 3.25
rs 3.28 2.91 3.03 3.03

CsBr
sc 3.31 2.87 3.04 3.05 2.98
rs 3.01 2.66 2.79 2.74

CsI
sc 3.05 2.63 2.79 2.76 2.83

not available in the literature. Therefore, these three solids
with rs structure have been excluded in our error analysis
in cohesive energy. The statistical errors of the LSDA and
PBE are given in Table I. The calculated individual cohesive
energy and reference value can be found in Table S8. (The
ZPE effect has been removed from experiments.) The vdW
correction to cohesive energy can be obtained from Eq. (3),
with the screened vdW coefficients calculated from Eq. (6). We
have also calculated the cohesive energies with the PBE+D3
and PBE+TS methods. From Table I, we can see that the
vdW correction is also important, reducing the error of PBE
by a factor of two, a result similar to PBE+D3 but much
better than PBE+TS (Table S8). This significantly improves
the PBE description of energetics. The maximum deviation of
PBE occurs for transition metal Au, but the error drops from
−0.58 eV/atom to −0.27 eV/atom with our vdW correction.
Our evaluation also agrees reasonably well with those of Kim
et al. [56], in which they found that the original TS yields an
MAE of 0.78 eV/atom, while the improved version TS-SCS
produces an MAE of 0.38 eV/atom for nine ionic solids.

Structural phase transition of CsCl, CsBr, and CsI. Due
to the increase of the volume of positive ion as well as
negative ion from Li+ to Cs+ and from F− to I−, the
most stable structure of CsCl, CsBr, and CsI is not the rs
structure, as other family members take, but the less dense
CsCl structure. To understand the details of this phenomenon,
we calculate the cohesive energies of these halides in both
rs and CsCl structures with the LSDA and PBE functionals.
The results are displayed in Table II. From Table II, we
observe that the LSDA cohesive energies of the CsCl structure
are always larger than those of the rs structure for all
three cesium halides, suggesting that the CsCl structure is
a more stable structure. This is in perfect agreement with
experiments.

However, PBE incorrectly predicts that the rs structure
is more stable. When we add the screened vdW correction
to PBE, the energy difference between the two structures
becomes qualitatively correct, like LSDA, with the PBE+vdW
cohesive energy in agreement with experiments. Recently,
Zhang et al. [62] also found that, with a vdW correction to
PBE, the right crystal structures could be predicted.

Higher-order contribution and screening effect. We have
studied the effects of higher-order contribution and dielectric
screening on the lattice constant and cohesive energy of
NaCl. For comparison, we first calculate the vdW coefficients
with and without the screening. We show that the screening
effect on the vdW coefficients is very important (Table S9).

Then we calculate the lattice constant and cohesive energy.
The results are given in Table S10. From Table S10 we see
that, without higher-order contributions, the vdW correction
will be underestimated by about 50%, while without the
screening, the vdW effect will be overestimated by roughly
the same. This suggests that simpler and less sophisticated
methods often work well even for solids, due to error
cancellation.

Screened three-body interactions. The three-body vdW
interaction [63,64] makes an additional contribution to the
pair interaction of Eqs. (3) and (4). It can be evaluated
with our model, as explained in the SM [31]. Here we have
evaluated the leading-order three-body contributions for NaCl.
The results are given by Tables S9 and S11, respectively. From
Tables S9 and S11, we observe that, due to the important
screening effects, this contribution is very small and has been
neglected in all our calculations.

In summary, we have proposed an accurate vdW correction
to semilocal DFA for solids and applied DFA+vdW to
calculate the lattice constants and cohesive energies of ionic
solids and metals. We find that, with the vdW correction,
the performance of PBE can be significantly improved. This
remarkable accuracy is largely due to the correct physics built
into our model, such as (i) higher-order interactions involving
C8 and C10, (ii) the screening effect, and (iii) strict separation
between the short-range part and long-range part. To check
our formulation, we have replaced the PBE bulk moduli
with experimental values. We find that the results are even
slightly better (Table S7). We further include the three-body
interactions and find that this inclusion has a very small effect
on two-body interactions, due to the screening, suggesting
the robustness of the present model. We also evaluated the
lattice constants and cohesive energies of these solids with the
dispersion-corrected DFA methods PBE+D3 and PBE+TS.
We find that, while PBE+D3 provides a fairly accurate
description for these two quantities, the PBE+TS method
worsens the PBE values [56,57]. Our physics-motivated vdW
correction should be applicable to some other semilocal
functionals such as TPSS [4] as well and thus sheds light
on solid-state electronic structure calculations by moving
them toward greater accuracy. Furthermore, our model has
included many physical effects such as dielectric screening,
higher-order interactions, and proper damping, without fitting
any parameter to the predicted equilibrium properties of solids.
This makes the model easily transferable from one system or
lattice structure to another. We expect that our vdW correction
should also improve the performance of PBE for other lattice
structures very well.
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