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Quantum pressure and chemical bonding: Influence of magnetic fields on electron localization
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Chemical bonding is the central concept of chemistry that has been used to explain the properties of molecules
and solids as well as chemical processes. In recent years, considerable progress has been made toward a simple
and yet fundamental understanding of this concept for isolated systems. Here we propose the quantum pressure
to study electron localization in molecules and solids as well as the influence of an external magnetic field. A
high pressure indicates chemical bonding and electron localization, while a low pressure indicates intershell
region and electron delocalization. We find that electrons become more localized between nuclei when exposed
to a magnetic field. We demonstrate that our quantum pressure not only can reveal electronic shell structure of
atoms, but also can be used to visualize chemical bonding in molecules and solids, significantly extending the
applicability of this tool to wide-ranging problems.
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Since the concept of the chemical bond was originally
introduced one century ago [1], it has undergone a series
of evolutions [2], leading to modern chemical bond theory
of two schemes: valence bond theory and molecular orbital
theory, both of which stem from the Pauli exclusion principle
and involve the linear combination of atomic orbitals (LCAO)
[3,4]. A subset of descriptive concepts derived from the
chemical bond theory, such as atomic shell structure, electron-
pair bond, lone electron pair, conjugated π subsystem, bond
order, etc. have become the standard language of chemistry.
According to the valence bond theory, electrons become
localized in pairs between nuclei when a molecule is formed.
The nature of the chemical bond can be rigorously understood
by quantum-mechanical laws such as wave function-based ab
initio methods and first-principles approaches (e.g., density
functional theory [5]). However, just solving the Kohn-Sham
equation does not provide an intuitive picture of the chemical
bond, because either the wave function or the electron density
alone cannot clearly reveal the bonding structure. Chemists
tend to rely on the concepts that are less rigorous but can be
easily explained. Theories based on descriptive concepts such
as VSEPR (valence shell electron pair repulsion theory) [6,7]
and orbital hybridization [3,4] are still popular today. However,
it is a great challenge to develop the breadth of the concept
and make it as rigorous as we can, yet as simple as possible,
so that it is more powerful and more useful.

Orbital overlap population analysis [8] based on the Pauli
exclusion principle provides an elegant way to understand
the chemical bond in terms of atomic orbital contributions.
The idea is that one can express the wave functions in terms
of the LCAO, whose coefficients can be calculated with
the variational approach. From the LCAO coefficients, we
can easily identify the contribution of each atomic orbital
to the chemical bond, including bonding, nonbonding, and
antibonding. Since the analysis can be easily understood,
it has been widely used to describe the chemical bonding
structure of π subsystems. Based on this method, Dronskowski
and Blöchl [9] proposed crystal orbital Hamilton populations
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(COHP) to study electron localization in solids. COHP offers
an alternative way to visualize the chemical bond from energy
resolution via population weighted density of states.

A frequently asked question is “What does a chemical
bond look like?” To explore the answer, Bader [10] proposed
an electron localization indicator based on the Laplacian of
the density ∇2n(r), which can reveal the bonding structures
intuitively. This leads to the theory of atoms in molecules [10],
offering a rigorous interpretation of the descriptive concept
“atoms in molecules” [4]. It has been applied to study the
electron localization in solids [11]. However, ∇2n(r) is a
mathematical construction. In the search for electron local-
ization indicators, an important step was made by Becke and
Edgecombe [12]. They constructed an electron localization
indicator, called electron localization function (ELF), from
the curvature of the conditional pair probability. It was shown
[13] that the ELF can reveal excellent bonding structures. In
addition, it can be interpreted in terms of the Pauli exclusion
principle and is uniquely defined without any ambiguity [14].
Due to its simplicity and the remarkable properties, it has
been widely used to study the bonding structures of molecules
and solids [15,16]. In particular, it was extended [17] to
time-dependent situations to visualize bond breaking and
formation.

In iso-orbital regions of atoms and molecules such as the
core region, pair bond region, and the density tail, the non-
interacting kinetic energy density τ (r) = (1/2)

∑
l |∇φl(r)|2

tends to the von Weizäscker kinetic energy density τW (r) =
|∇2n|/8n2, while in other regions such as intershell regions,
τW < τ . In the uniform electron gas, τ (r) reduces to the
Thomas-Fermi kinetic energy density, while τW (r) vanishes.
Therefore, the ratio τW/τ can be used to reveal the bonding
structure. Because of this feature, this combination [18] has
been employed to construct density functional approximations.
Recently, de Silva and Corminboeuf [19] suggested a density-
based bonding descriptor, which can clearly exhibit both
covalent and noncovalent bonding.

The ELF (and other bonding indicators) have achieved
practical success in the description of the chemical bond. When
a molecule is exposed to an external field, the electron density
will be deformed in response to the external field. The ELF
can still capture part of this effect by the implicit dependence
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of orbitals and the electron density on the external field. This
effect may be properly described by the quantum pressure
p(r) [20–22], a physically meaningful quantity related to the
Hamiltonian [23,24]. It was shown [22] that, like the ELF,
p(r) can excellently reveal atomic shell structure. Since p(r)
describes the local stress or force on electrons, it should be able
to reveal the bonding structure of molecules as well. However,
our study shows that the original formulation of p(r) does
not clearly display the chemical bonding (see Fig. S1 in the
Supplemental Material [25]). We identify that this problem
is simply due to the ∇2n(r) term [Eq. (2) below]. Recent
works have shown [26–29] that this difficulty can be reduced
or fixed by empirical adjustment of the amount of ∇2n(r) in
the kinetic part of the stress tensor, making use of the fact that
there is an ambiguity in the definition of the kinetic energy
density and the stress tensor. Since this offers flexibility in
optimizing the bonding index, without violation of any exact
condition, a growing body of research regarding this ambiguity
is accumulating in recent years.

Study of the influence of external magnetic fields on
molecules and solids has long been a topic of interest.
Many current-density functional theory (CDFT) methods
[30,31] have been proposed to describe this effect. In recent
years, many papers have appeared studying magnetic field
effects on chemical reactions [32,33]. Based on experimental
observations, controversial views on the influence of magnetic
fields were recently proposed [34]. To have an intuitive and
yet fundamental understanding of this effect on the chemical
bonding, here we formulate the quantum pressure in a magnetic
field based on the stress tensor. Then we generalize it to
finite systems to study the bonding structure of molecules
and solids, with and without magnetic fields. We find that the
quantum pressure can clearly exhibit the chemical bonding,
and that electrons in a molecule become slightly more localized
between nuclei, when exposed to a magnetic field.

The quantum pressure is defined as one-third of the trace
of the stress tensor in quantum systems. It describes the local
force density exerted on electrons. However, in addition to the
Laplacian discussed above, it can be also altered by adding
any divergence-free stress tensor without changing the force
[35,36]. To clarify, we start with the conventional definition
of the stress tensor satisfying the local force balance equation
[24] ∂νpμν + n∂μvext = 0, which can be obtained from the
equation of motion. Here the first term is the internal force
exerted on electrons, while the second is the external force,
with vext being the external potential due to the nuclei. pμν is
the stress tensor consisting of the kinetic and potential parts
[37]. Clearly the external force or potential does not cause
any shell structure. So, the bonding structure must arise from
the internal force or stress tensor. In the uniform electron
gas, the external force identically vanishes and electrons
are fully delocalized. According to the local force balance
condition, pμν must be a constant stress tensor. In inhomo-
geneous systems, if the pressure is high in some (bonding)
regions, there must be some (intershell) regions in which the
pressure is low. Therefore, the quantum pressure reflects the
variation of the local force exerted on electrons and bonding
structure.

In the presence of a magnetic field B = ∇ × A, the kinetic
stress tensor [24] can be obtained by replacing the momentum

operator with the canonical one, i.e.,

pk
μν(r) = (1/2)〈[(−i∂μ + Aμ/c)ψ̂]†[(−i∂ν + Aν/c)ψ̂]

+ H.c. − δμν∇2n̂/2〉, (1)

where c is the speed of light, ψ̂ is the field operator, and n̂ is the
density operator. Here the density Laplacian (∇2n̂) arises from
a transformation from the Laplacian (ψ̂†∂2

μνψ) to the gradient
(∂μψ̂†∂νψ) expression [36,37], and thus is part of the stress
tensor. After simple algebra, we obtain

pk(r) = 1

3
Trpk

μν = 2

3
τ − ∇2n

4
+ 2

3c
A · jp + n

3c2
A2, (2)

where τ = (1/2)
∑

l |∇ψl|2 is the kinetic energy density, ψl

are the Kohn-Sham occupied orbitals, and jp is the param-
agnetic current density defined by jp = (1/2i)

∑
l(ψ

∗
l ∇ψl −

ψl∇ψ∗
l ). For a uniform magnetic field, A = B × r/2 satisfies

the Coulomb gauge ∇ · A = 0. From Eq. (2) we see that
magnetic fields can affect pk(r) explicitly by coupling to the
current of electrons (last two terms), and implicitly via the
orbitals.

The kinetic pressure contains ∇2n, which originates from
the definition of the stress tensor [22,24]. It is divergent at a
nucleus, where the exact pressure remains finite, because n is
finite everywhere. This problem [38] can be fixed by eliminat-
ing it from Eq. (2) through the second-order gradient expansion
of the kinetic energy density [39] τ = τTF + |∇n|2/(72n) +
∇2n/6, which is valid for slowly varying densities. Here
τTF = (3/10)(3π2)2/3n5/3 is the Thomas-Fermi kinetic energy
density. Since the kinetic energy is a physical quantity, it
should be magnetically gauge invariant. Therefore, we should
replace τ with the gauge-invariant kinetic energy density [31]
τ − |jp|2/2n in the slowly varying gradient expansion. This
leads to

pk = (2/3)τTF + |∇n|2/(48n) − 5(τ − τTF)/6

+ 5|jp|2/(12n) + 2A · jp/(3c) + nA2/(3c2). (3)

(Note that jp and A are antiparallel.) The slowly varying
density is the paradigm of condensed matter physics, and the
gradient expansion of the kinetic energy density has been used
to eliminate the Laplacian in developing semilocal density
functional approximations [18]. From Eq. (3) we see that
the quantum pressure will become higher in a magnetic field,
suggesting that electrons become more localized in a magnetic
field [40–43]. For visualization purpose, we limit the scaled
quantum pressure to the range of 0 � L � 1. This can be
achieved with [22]

L = 1

2

[
1 + pkq/pTF√

1 + (pkq/pTF)2

]
, (4)

where pTF = (2/3)τTF is the Thomas-Fermi classical pressure,
and pkq is the kinetic part of the quantum pressure given by

pkq = |∇n|2/(48n) − 5(τ − τTF)/6 + 5|jp|2/(12n)

+ (2/3c)A · jp + nA2/(3c2). (5)

To emphasize the role of the quantum effect (which vanishes
in the thermodynamic limit), here we choose pkq, instead of
pk, as our electron localization indicator.
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Now we turn to the potential part. Since the Hartree part
does not yield atomic shell structure [22], we only consider
the exchange-correlation (XC) contribution. It was shown
that the XC stress tensor may be calculated with DFT-LDA
[20,21] or GGA [22] via a nonlinear coordinate transformation
[21,24]. In the presence of a magnetic field, we can calculate
it from CDFT. In CDFT, a current-density functional can be
written as Exc[n,jp] = ∫

d3rnεxc(n,∇n,τ,jp). According to
Ref. [31], current-density functionals can be constructed from
ordinary density functionals. Then the XC stress tensor is
obtained as pxc

ij = δij [nvxc + jp · Axc/c] − 2δExc/δgij , where
vxc is the XC potential, and gij is the metric tensor [21,22]
for curvilinear coordinate systems. In cartesian coordinates,
gij = δij . Evaluating the functional derivative of Exc with
respect to the metric tensor gij and taking the trace of the
stress tensor yield the XC pressure

pxc = nvxc + jp · Axc/c − exc − (1/3)(s∂exc/∂s

+ 2τ∂exc/∂τ + jp∂exc/∂jp). (6)

where jp = |jp|. (See Fig. SI for detailed derivation [25]). For
closed-shell systems, as in most molecules, the XC pressure is
relatively small, compared to the kinetic part, because external
magnetic fields only affect it through the implicit dependence
of the wave function or orbitals in this case.

Figure 1 shows the scaled quantum pressure for the open-
shell atom Al, the effect of the paramagnetic current density
on the quantum pressure, and the XC effect, evaluated with
Eqs. (4) and (6), respectively. For open-shell atoms, even when
magnetic field B = 0, there exists orbital current, due to the use
of complex orbitals. In these cases, the orbital current effect
can be calculated from Eq. (4), with the assumption [18] that
the physical current is zero, leading to A = −cjp/n. We can
see from Fig. 1 that the atomic shell structure is largely due to
the kinetic quantum pressure, while the XC effect also shows
atomic shell structure similar to that exhibited by the kinetic
part. The current effect is visible, though quite small.

Figure 2 shows the isosurface of the kinetic quantum
pressure [Eq. (4)] and the contour plot for diverse systems
ranging from small molecules (H+

2 , H2O, N2, benzene),
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FIG. 1. (Color online) Variation of the scaled pressure and its XC
component for the Al atom and the effect of the paramagnetic current
density. r is the radial distance from the nucleus.

FIG. 2. (Color online) Isosurfaces (gold) and image plots (blue-
green-red) of the scaled quantum pressure L for (a) H+

2 , (b) H2O, (c)
N2, (d) benzene, (e) C20 fullerene, (f) graphene, (g) porphyrin-Fe2+

complex, (h) NaCl, and (i) silicon. The isosurfaces are plotted with
L = 0.1 for (a)–(f), L = 0.15 for (g), and L = 0.5 for (h) and (i).
Except for (f)–(i) in which pseudopotentials are used, all other are
performed with all-electron calculations.

nanoscale molecules (C20 fullerene and porphyrin-Fe2+ com-
plex), to extended systems (graphene, NaCl, and Si). In our
calculations, the electron density and orbitals are generated
with DFT-GGA [44], using the locally modified Octopus
code [45]. The XC effect is included only implicitly via the
Kohn-Sham orbitals. The top of Fig. 2(a) is the isosurface of
the scaled quantum pressure for a H+

2 molecule (paradigm in
quantum chemistry), while the bottom is the contour plot. Red
color represents high pressure, indicating that the electrons are
localized between the nuclei to form a chemical bond.

The top of Fig. 2(b) is the isosurface of a water molecule
that characterizes the OH bond and the lone-pair electrons of
the oxygen atom, while the contour plot at the bottom shows
that the OH bond is formed by electrons localized around
hydrogen atoms, due to the Coulomb repulsion from the lone
electron pair on the oxygen atom. Specifically, the bright
(yellow-green) area close to the oxygen nucleus represents the
high pressure region arising from the two 1s-core (K-shell)
electrons. The outer blue area represents the low-pressure
core-valence intershell region of the oxygen atom. The green-
red area close to the hydrogen nucleus is the bonding region
due to the L-shell electrons of the oxygen atom and the K-shell
electron of the hydrogen atom. The light green area below
the oxygen nucleus corresponds to the lone-pair electrons.
Figure 2(c) illustrates the spatial variation of the quantum
pressure for a N2 molecule. From Fig. 2(c) we observe that
the quantum pressure is highest in the middle between two
nitrogen nuclei, decays in the intershell region, and then
reaches local maxima in the 1s core regions. We also see the
signatures of core-valence intershell regions and nonbonding
or lone electron pairs by the left as well as right sides of the
two nitrogen atoms.

Figures 2(d)–2(f) display the quantum pressure for systems
with conjugated π electrons (benzene, C20 fullerene, and
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FIG. 3. (Color online) The change of the quantum pressure,

L = L(B = 1) − L(B = 0), in (a) C2H4 and (b) C6H−

6 , due to
the external magnetic field of B = 1 a.u. along the z direction, and
contributions from the three current-dependent terms in Eq. (3) from
left to right in each panel. 1 a.u. = 2.35 × 105 T.

graphene.) The variation of the quantum pressure share similar
features in these three systems: all C-C bonds exhibit identical
patterns with the quantum pressure, which reaches the highest
value at bond midpoint and the lowest in the core-valence
intershell regions. The absence of high pressure region close to
carbon nuclei in C20 fullerene and graphene is simply due to the
use of pseudopotentials for carbon atoms. Figure 2(g) shows
the quantum pressure of porphyrin-Fe2+ complex, which is
of biological interest. From the image plot of Fig. 2(g) we
can see a small high pressure region between Fe and N
atoms, indicating the chemical bonding between these two
atoms, and high pressure regions between C and N atoms and
between C atoms, suggesting strong bonding between these
atoms. Finally we study the quantum pressure in NaCl and
silicon solids. Figure 2(h) shows the isosurface of the quantum
pressure in NaCl and the contour plot. From the isosurface
of the quantum pressure, we see that the electrons in NaCl
are basically localized around each chlorine atom, reflecting
the ionic character of the Na-Cl bond, while the contour plot
displays the shell structure of NaCl. Since the pseudopotential
is used in solid-state calculations, the 1s core region in which
the pressure is highest is not shown in the contour plot.
Figure 2(i) shows the isosurface of the quantum pressure in
bulk silicon. From Fig. 2(i) we can see that electrons in silicon
are largely localized in the middle region between two Si
nuclei, illustrating the typical covalency of the Si-Si bond.

Figure 3 shows the change of the kinetic quantum pressure,

L = L(B = 1) − L(B = 0), in (a) ethene (closed shell) and
(b) benzene anion (open shell), in a uniform magnetic field
with B = 1.0 a.u., and the contributions from the three current-
dependent terms in Eq. (3). It can be seen from Fig. 3(a) that

when we apply a magnetic field normal to the molecular plane,
the quantum pressure increases around the bond axis, while
it decreases in the usual π -electron region off the bond axis,
suggesting that the electrons become more localized toward the
bond axis. A similar phenomenon can be observed in benzene
anion exposed to a magnetic field normal to the C6H−

6 plane.
From Fig. 3(b) we see that, in a uniform magnetic field, the
quantum pressure becomes slightly higher in the middle region
of the C-C bond, suggesting that the electrons become more
localized toward the bonding region between carbon atoms.

However, due to the asymmetric orbital occupation of
electrons, the change in the quantum pressure is also not
perfectly symmetric. Our calculations show that the magnetic
field effect on the quantum pressure in C6H−

6 is much stronger
than in C2H4 by two order of magnitude. This is because in
C6H−

6 , electrons can have a circular motion generating a ring
current, under the influence of the magnetic field. Finally,
we calculate the difference between the ELF of Becke and
Edgecombe [12] with and without a magnetic field, ELF(B =
1) − ELF(B = 0), in C6H−

6 . We find that the ELF can also
capture the magnetic field effect, showing that, in a magnetic
field, electrons become more localized between C atoms, but
this effect is expectedly smaller than that on the quantum
pressure.

In summary, we have formulated the quantum pressure
in a magnetic field. Like an energy density, it has physical
significance, although it is not uniquely defined. A nice
feature of the quantum pressure is that it is derived from
the Hamiltonian [2]. We have demonstrated that the quantum
pressure can reveal the bonding structure. This provides an
alternative view on the chemical bond. Our study shows
that electrons become more localized between nuclei when
a molecule is exposed to a magnetic field, but this effect
can be only observable when molecules are exposed to
ultrahigh magnetic fields such as those in astrophysics [41–43].
In laboratory-accessible magnetic fields, this effect is too
small to be observable, as discovered experimentally in
chemical reactions [34]. Since it is a local stress related to
the Hamiltonian, we can study many other phenomena (e.g.,
spin-flip transition [46]) by incorporating various interactions
such as spin-orbit coupling [47] into the quantum pressure.
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